The Existential Theory of the Uppersemilattice of Turing Degrees with Least Element and Jump is Decidable

نویسنده

  • Manuel Lerman
چکیده

We show that any finite structure consistent with the axioms of jump uppersemilattices with least element can be embedded into the jump uppersemilattice of Turing degrees with least element. This result implies that the existential theory of this structure is decidable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Existential Theory of the Poset of R . E . Degrees

We show the decidability of the existential theory of the recursively enumerable degrees in the language of Turing reducibility, Turing reducibility of the Turing jumps, and least and greatest element. The Existential Theory of the Poset of R.E. Degrees with a Predicate for Single Jump Reducibility

متن کامل

Some improvements in fuzzy turing machines

In this paper, we improve some previous definitions of fuzzy-type Turing machines to obtain degrees of accepting and rejecting in a computational manner. We apply a BFS-based search method and some level’s upper bounds to propose a computational process in calculating degrees of accepting and rejecting. Next, we introduce the class of Extended Fuzzy Turing Machines equipped with indeterminacy s...

متن کامل

Eventually Infinite Time Turing Machine Degrees: Infinite Time Decidable Reals

We characterise explicitly the decidable predicates on integers of Innnite Time Turing machines, in terms of admissibility theory and the constructible hierarchy. We do this by pinning down , the least ordinal not the length of any eventual output of an Innnite Time Turing machine (halting or otherwise); using this the Innnite Time Turing Degrees are considered, and it is shown how the jump ope...

متن کامل

The Decidability of the Existential Theory of the Poset of Recursively Enumerable Degrees with Jump Relations

We show that the existential theory of the recursively enumerable degrees in the language L containing predicates for order and n-jump comparability for all n, and constant symbols for least and greatest elements, is decidable. The decidability follows from our main theorem, where we show that any finite L-structure which is consistent with the order relation, the order-preserving property of t...

متن کامل

Embedding jump upper semilattices into the Turing degrees

We prove that every countable jump upper semilattice can be embedded in D, where a jump upper semilattice (jusl) is an upper semilattice endowed with a strictly increasing and monotone unary operator that we call jump, and D is the jusl of Turing degrees. As a corollary we get that the existential theory of 〈D,≤T ,∨, ′〉 is decidable. We also prove that this result is not true about jusls with 0...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006